Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes.
نویسندگان
چکیده
We report a novel optical biosensor platform using near-infrared fluorescent single-walled carbon nanotubes (SWNTs) functionalized with target-recognizing aptamer DNA for noninvasively detecting cell-signaling molecules in real time. Photoluminescence (PL) emission of aptamer-coated SWNTs is modulated upon selectively binding to target molecules, which is exploited to detect insulin using an insulin-binding aptamer (IBA) as a molecular recognition element. We find that nanotube PL quenches upon insulin recognition via a photoinduced charge transfer mechanism with a quenching rate of k(q) = 5.85 × 10(14) M(-1) s(-1) and a diffusion-reaction rate of k(r) = 0.129 s(-1). Circular dichroism spectra reveal for the first time that IBA strands retain a four-stranded, parallel guanine quadruplex conformation on the nanotubes, ensuring target selectivity. We demonstrate that these IBA-functionalized SWNT sensors incorporated in a collagen extracellular matrix (ECM) can be regenerated by removing bound analytes through enzymatic proteolysis. As proof-of-concept, we show that the SWNT sensors embedded in the ECM promptly detect insulin secreted by cultured pancreatic INS-1 cells stimulated by glucose influx and report a gradient contour of insulin secretion profile. This novel design enables new types of label-free assays and noninvasive, in situ, real-time detection schemes for cell-signaling molecules.
منابع مشابه
A novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes
Objective(s): This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807. Materials and Methods: First a DNA aptamer recognizing cocaine was non-co...
متن کاملSpatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-Infrared Fluorescent Carbon Nanotube Nanosensors
Fluorescent nanosensor probes have suffered from limited molecular recognition and a dearth of strategies for spatial-temporal operation in cell culture. In this work, we spatially imaged the dynamics of nitric oxide (NO) signaling, important in numerous pathologies and physiological functions, using intracellular near-infrared fluorescent single-walled carbon nanotubes. The observed spatial-te...
متن کاملDNA Nanotubes Coupled with Magnetic Nanoparticles as a Platform for Colorimetric Biosensors
This study describes the fabrication techniques for two forms of magnetic DNA nanotubes (MDNTs) and their applications as platforms for developing colorimetric assays. The first form of MDNTs was DNTs filled-up with magnetic nanoparticles (MNPs) and the second one was DNTs arayed with MNPs on their extrior surfaces. Then the both forms of MDNTs were employed as platforms for attaching a specifi...
متن کاملHigh-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array.
Intercellular communication via chemical signaling proceeds with both spatial and temporal components, but analytical tools, such as microfabricated electrodes, have been limited to just a few probes per cell. In this work, we use a nonphotobleaching fluorescent nanosensor array based on single-walled carbon nanotubes (SWCNTs) rendered selective to dopamine to study its release from PC12 neurop...
متن کاملAn aptameric graphene nanosensor for label-free detection of small-molecule biomarkers.
This paper presents an aptameric graphene nanosensor for detection of small-molecule biomarkers. To address difficulties in direct detection of small molecules associated with their low molecular weight and electrical charge, we incorporate an aptamer-based competitive affinity assay in a graphene field effect transistor (FET), and demonstrate the utility of the nanosensor with dehydroepiandros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2011